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In this paper the characteristic solution of the two-dimensional transonic
flow of a gas 1s constructed far from a symmetrical profile placed at zero
angle of attack along the axis of a channel with parallel walls. The indi-
cated characteristic solution of the stream function (s, n) , which satis~
fies the Tricoml equation, is constructed in the plane 9 , n by the method
of singular integral equations. It 1s shown that for unlimited widening of
the channel, preservation of the choking conditlon and fulfillment of a cer-
tain other condition, this characteristic solutlion transforms into the char-
acteristic solution of two-dimensional free sonic flow, found by Frankl' [1]
and - Guderley.

1. We shall examine the flow over a thin symmetrical convex profile placed at
zero angle of attack along the axis of a channel with parallel walls of width

2L , by a two-dimensional transonic gas rlow at the

'g p-d 16 choking condition when a sonic line 43 (Fig.l)arises
/|
/7

between the body and the walls.

/

7 @0 l/lf Let the stream function (g, n) satisfy the
9%

-: Tricoml equation

20| w . Moo + Py = 0 (1.1)

L \ and assume the value ¢y = O on the axis DE and
1 2 on the boundary of the body; on the wall DB of
’ the channel ¢y = ¢ . Here ¢ 1s the angle between
Fig. 1 the velocity vector and the axis of the channel,
n 1is a known function of the veloclty modulus and
2Q 1s the gas flow in the channel.

Far 1n front of the profile the flow closely resembles a homogeneous sub-
sonic flow (ﬂw> 0), behind the sonilc 1line 4B the flow becomes supersonic.
Because of the symmetry of the picture we 1limit ourselves to a study of the
flow above the axis DE to the limiting characteristic pBC . The flow region
DEACBD  transforms in the plane @n into a certain region (Fig.2). The

1021



1022 .G.D. Sevost'ilanov

stagnation point of flow £ transforms to Infinity in the plane gn . Curve
04F in Fig.2, which corresponds to the boundary of the bcd&, is usually not
known. For sufficlently great width 2L of the chan-~
nel, the influence of shape of the profile on the
subsonic flow of the gas far from the body is insig-
nificant. The region of gas fliow far from the profile
(where 8 = 0) will be reflected intc the vicinity of
axis 7 (BDF) in Fig.2; function ¢{g, n) for o = ©
will depend weakly on the form of curve ZE4C for con-
stant ¢ and n_ . The purpose of the following will
be to obtain the function ¥(8, n) which deseribes the
transonic flow far from the body in the channel (for

# = O) where the shape of the body has little influ-
Pig. 2 ence on the gas flow.

In order to have a shock-free continuation of flow beyond the sonic line
AB , it 1s sufficient for the stream function v{(p, m) in the vieinity of the
center of the nozzle B to have the following behavior [3]:

v (0) = Q@ — 3%hb"=+ 0 (6), v@)=hI"+ 0@ ©->0 (1.2)
PO, 0)=1(0), (@O, 0)/on=v(0) (h=-const) (1.3)

The desired function (s, n} must describe the homogeneous flow far ahead
of the profile and also the flow in the vicinity

Here

_(?E 7 f\ of the center of the nozzle F near the wall of
y \ the channel DB , where the conditions (1.2) and
=t \ (1.3) hold.
7 ‘ 2, In order to construct a characteristic solution
g=d | of the flow far from the profile in the channel — a
B 8 solution, which 1s independent of the shape of

the surface of the body — we proceed in the fol-
lowing way. The curve FE4C 1n Fig.2 1g removed
to infinity in the g¢n plane, retailning the con-
dition ¢ = 0 on EAC . All other points and
boundary conditions for the function ¢{8, n)
will be unchanged. Then we obtain the following boundary value problem for
v(6, n) : within the region EDBC'A’E (Fig.3) where 4'C’ 1s a charac-
teristic of Equation (1.1) moved out to infinity, 1t 1s necessary to deter-
mine a bounded solution of Equation (1.1) satisfying the following conditlons

Jy=0
N4 g
Fig. 3

Q.01 Ny
q = 2.1
W(Owﬂ}-*{o’ﬂm<n<w ( }
Y0, 0) = @ +0(8%), P,(8,0)=0(0"%) (®-0) (2.2)
P =0 at infinity EA’ (2.3)

P =10 on the infinite characteristic AC (2.4)
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By constructing the solution ¢(¢, n) of this boundary value problem of
Tricoml, for 6 =~ O the desired characteristic solution of the flow is
obtained far from the profille in the channel.

Following Gellerstedt [ 4] the boundary value problem is solved by the
method of singular equations in closed form. The solution y(8, n) for n2 O
is sought in the form of a sum of solutions of Equation (1.1)

P (6, M) =9, (68, m) b (6, M) (2.9)

8

2 1 - ¥ 2 3 2 3/
D10, 1) = Qtetts (eI (M) Ty, (M) dh,  t= 2 Pyt = 5 Me™ (2.6)

Owg (=¥ I )

w0, = —v{ v {[O—sp + g —[O+sr+ 5] s
r= S @.7)

Here v (0) =13 (6,0),0 <08 < 00 1s a function subject to determina-
tion. .It satisfies the conditions: v (8) = O (™) for 0 — 0; v (8) =0
for § = » , which follows from (2.2) and (2.3). It is not difficult to
verify that function ¢(68, n) of Equation (2.5) satisfies conditions (2.1)
and (2.3). Condition (2.4) on characteristic (¢‘4’ 1is equivalent to the
integral relationship ([5), p.381)

v(s)ds

o (0 <8< o) (2.8)

1(9)='r§°

]
where the notation of (1.3) is used; the constant vy 1s defined in (2.7).

The second integral relationship between functions 7(g) and v(p) is
obtained from Equations (2.5) to (2.7)

[ee]
1) = 1@ — 1| vE (0= — @+ M ds <o) (29)
0
Here T, (0) =1, (0,0). Eliminating the quantity 7(8) from (2.8) and
(2.9), we shall obtain an integral equation for the determination of func-
tion wv(8) . After some transformations [5), this integral equation will
take the form

v(0) —

[ee]

S(s_ie+sj,e)~*(s)ds:F(9) (0<0<oe)  (2.10)

[H]

(s 0]
- 1 © o1y (s)ds , d
F (e) = —VgﬂT \ (si:))zJ ’ T (B) = a6 '\l?]_(e, O) (211)

The singular integral equation (2.10) has an automorphic kernel. By sub-

stitution of 6%= x and 8%= y the equation readily reduces to the charac-
teristic integral equation. Solution of Equation (2,10) is written in closed
form ([6] Section 47). Since the desired function v(8) satisfles conditions
enumerated after Equation (2.7), then in (2.10) the index of the equation will

1
aVsi3

Here
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be %k = O ; therefore in the indlcated class, Equation (2.10) has a unique
solution, if function F(9) satisfles certain conditions of smoothness ([6],
Section 47).

The canonic function of Equatlion (2.10) in the given class 13 Z (8) = 07",
and the solution has the form

vO) =4 [FO+ 75 ‘§°(S)‘“(s—1—9+ T5) F@ds]= RIF ©)]

(0<0< ) (2.12)
The function v(g) which was found, determines the solution +¢(8, n) of
the problem of Tricomi. It remalns to compute the integrals encountered and
to verify the fulfillment of condition (2.2). Functions T, (8) =1+, (8, 0)
and T, (8) =dy,(0,0)/d0 are determined from (2.6)

71(8) = Qlos™ (2/) S Ao Ty, (leh) dh = S ()" y (too%—(,—,) " x

1.5 I
XF(?,' 2735 3 =+92) (2.13)
t‘/&

1,0-A0 - —
11' (9) Qtoo I‘(’/) S L/e J!/ (tool.)dk = Q( ) (92+ ’)v/'

The hypergeometric series in (2.13) converges absolutely for all real
values of the parameters.

For @ — 0 we obtain 1,(8) = Q + O (8). Substituting the integral
for t/(e) from (2.13) into (2.11) and changing the order of integratilon we
find

60Ty (Eooh) A =

Qlo, "2 T (s)
F(0) = g

V3arT () p

bl t 2 1 5 t 2

= —3——— Qz, > F <1, - 5 —,,—199—2) (214)
a2ts t.”? 02+ ly 6 3782tk

where the nypergeometric seriles converges absolutely for all real values of

the parameters. Substituting the serles for F(g)

¥ 1 5 N
F(e) e 3 ‘O S r (IL + /G) ( 3 too2n+2 (62 _|[_ toog)_n_l (2.,1'))
2l 4 1 (4 )l (n >
[ve]

into Equation (2.12) we find \,(e). It is necessary .here to compute the
function R [(0% + te?)""1] (n = 0,1,2...), where the linear operator

R 1s determined in (2.12). After a slight transformation we obtain

[ee]

1 Y C S S R
RO+ )] = [0+ 1) 4 0| i — | 210)
0

The singular integral entering into this 1s computed as follows (*):

*) See footnote on the next page.
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ds = — )/ 30% (67 + tood) "1~

s—02

<§> SI{' (s_*_tcog)o-n-l
’ 2
1 17 o T, t, ) _
——warw B w)F (_"’ L—ntgigria) G=012.)

Then in (2.16) some terms disappear and from (2.15) and (2.12) we deter-
mine the function v(8)

L 3CA" Qo™ 1 DAY T (a—Yo)T ()
vE) = 04T T 2 TR I T (6 F S T D
7 too?
XF(—?I, 1, -—'Il'-{’-‘g; W) (2.1?)
Here equatlions for the transformatlon of gamma functions are utilized
111
F(1+Z)-‘=ZF(Z), F(i—Z)F(Z)ﬂ——sviﬁ‘nT

Series (2.17) converges absolutely. This follows from representation of
v(8) in the form (2.12) and (2.14%). Therefore, regrouping the terms in
series {2.17) in order of increasing powers of the argument of polynomials,

we obtain )
g Qo™ gyt (4 Mt
vO) =051 5—(“(7)7 (515 tm’-i-ﬁ“) (2.18)

Differentiating (2.9) with respect to 6 and eliminating +(8) with the
aid of (2.8), we arrive [5] at a singular equation for the derivative 7’(g).

v (0)— ——1—°§(§)"”(£_—3 timg) TOd =20 (0<0<o0)

ay3 )
With consideration of (1.2),(2.3),(2.10),(2.12) and (2.13) its solution
has the form o - t;/S 24/: 7 ( 1 1. 7 ) t:(, ___)
= it T s eV S, — 7y
7(9) e Vin 61 6 1 O

Condition (1.2) is satisfled here.

Thus the solution for the Tricomi problem (2.1) to (2.4%) 1is constructed.
The solution 1s determined by Equations (2.5) to (2.7) and (2.18). Integrals
in (2.6) and (2.7) can be presented in the form of series. For 0 = O solu-
tion (8, n) describes transonic two-dimensional flow of a gas far from the
profile placed in a channel with parallel walls.

In order to satisfy the condition ¢ = O on the boundary of the profile,
1t is necessary to add to the constructed solution (6, n) a regular solu-
tion §; of Equation (1.1) which vanishes for § =0, 0 <% < oo such that
the sum ¢ + ¢, 1s equal to zero along the curve F40 in Fig.2.

3. It will be shown that in case of indefinite widening of the channel,

*) In Equation 3.228.5 from [7] for ¢> O the factor p 1s left out infront
of all terms (see for example equation 3.222.2 from [7] for 4< 0 and pri-
mary source},
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while maintaining the chocking condition, and 1n satisfying a certain other
condition, the constructed solution transforms into the characteristic solu-
tlon of two-dimensional free sonic flow, found by Frankl' [1 and 2] and

Guderley , . .
Po (8, M) = Co™ [(1 — )% (Vs +5) — (1 + )+ (Y3 —5)]

p=V& L+ s=8fp 3.1)

here (¢ 1s some constant which depends on the size of the profile, This
self-similar solutlon of Equation (1.1) becomes zero for A =0 , O < n < =,
it 1s regular on the limiting characteristic RC’ and on B4’ (Fig.3),

turns to infinity at the polnt B (p=n=0) and tends to zero at infinity of
the plane 6, n for p > 0.

(3.2)
Designating o
WO =1 0)=C-5 6% v (0) = ‘9“"’6‘2 0 c e-% (0< 0 o0)
we readily find the relationship between 7,(6) and vo(ﬂ)
_ e vo (s} ds
ro(e)—1’§ oo (0<C 8 < o) (3.3)

Here the constant y 1s determined in (2.7). Relationship (3.3) shows
that V{6, n) vanlshes on the characteristic 4°'C’ (Fig.3).

We shall examine the 1limit of solution -¢(8, n) of (2.5) for unlimited
widening of the channel (L - ) whille the choking condition 1s maintained
(0 == , n~0). Then point D2 in Fig.3 approaches point 7 and the value
of y(8, m) increases without bound on section Dp . The 1limit of the sum

of the series from (2.17) for {, = Han;;—» 0 1is equal to the constant

F'QL, ——-1—;51; 1>== 2
G 6 3 15,2Va}/3

Therefore the limit of function wv(g) for t,~0, 0=~ is determined
by the 1limit of the product @ X tZ; from (2.17) which can be equal to zero,
to infinity or to a finite quantity, if it is not assumed that the body
dimensions are preserved when the channel is widened. It will be shown that
for the condition

lim Qtoo"a = A> 0 for ¢t —0 (A = const) (‘34)

the constructed characteristic solution (s, n) transforms into the charac-
teristic solution (3.1) for free sonic flow near the body. Denoting the
1imit of function ¢(8, m), when condition (3.4) is satisfied, by b(a, n)
and the 1imit of function v(8) by wv,(p), we obtain from (2.17)

v, (0) = —4—_2—;118’ $ (0 <0 <) (3.9)

i.e. function v,(8) can differ from function vo(A) in (3.2) only by a con-
stant factor. By equating these two we obtailn
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Ir r,(e) 1s the limit of 7(p) for ¢t - O and condition (3.4), then
condition (2.8) for y,(6, n) is rewritten in the form

Vi (s)ds

T (0 <8< o) (3.7)

@O =1\
?
Then from equality v, (0) = v, (0), 0 <0 < 00 and relationships (3.7)

and (3.3) it follows that 7T, (0) =7,(08),0 <6 < oo, Since

¥, (0, m) =1 (0, m) =0, 0 < o0,
then because of unlqueness of solution of the Dirichlet problem for | ;> 0
and the Cauchy problem for 1 <0, we obtain P, (0, 1) =vP,(6, 1) 1in the
region of Fig.3.

Condition (3.4) can be -written in a different form. For L ~ = and

Ne® O we have

Q =0(L), teo="1sMNe’=0[(1—Mx)"]
where M; 1s the choking Mach number of uniform flow far ahead of the profile
in the channel. Therefore we obtain from (3.4)

{ —Mey=B (Li)/ , My (3.8)

where ! 1s a characteristic linear dimension of the profile, B 1s a non-
dimensional constant which depends on the shape of the profile.

It remains to clarify the physical meaning of condition (3.8) for L - =
and ”m* 1 . We shall demonstrate that condition (3.8) is equivalent to the
requirement of maintailning the dimensions of the profile when the channel is
widenend at least for certailn shapes of profiles. For this it is necessary
to solve the boundary value problem ln Fig.2 for a definite profile, to ex-
press the characteristic dimension !¢ of the profile through ¢, Ny and the
shape of the profile and to check condition (3.8) for M_- 1 and for con-
stant ! . The problem of a wedge in the channel was solved analytically by
Marschner [8] by means of characteristic solutions of Equation (1.1) intro-
duced by Guderley for the condition ¢ _< g,, where n, is the half-angle of
the wedge. For the condition of constant wedge dimension the equation for
the choking Mach number ¥_ has the form (3.8).

The problem of a wedge in a channel under choking conditions was also
solved by Morioka [9] by the relaxation method. Calculations were made for
three values of the parameter. 1/L where ! 1s the length of the wedge for
fixed value of angle 8o,. For ¥ a2 1 the equation for choking Mach number
Ms of the form (3.8) which was obtained by Marschner agrees satisfactorily
with numerical values of [9]. An equation of the form (3.8) was also obtalned
by Guderley [10 and 11] in the solution of the problem of gas flow near a
flat plate placed at an angle of attack in a channel with parallel walls.

It may be assumed that condition (3.8)will be fulfilled for some convex
bodies when the channel is widened, when the choking condition of the chan-
nel is maintained and when:the dimensions of the profile are preserved. Then

the two-dimensional transonic flow near the profile placed into a channel
with parallel walls will transform into the free sonic flow near the profile.

We note that recently the characteristic solution of free sonic flow near
a body was checked experimentally [12].
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In conclusion the author offers sincere thanks to S.V. Fal'kovich for his

formulation of the problem and valuable comments.
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