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In this paper the characteristic solution of the two-dimensional transonlc 
flow of a gas Is constructed far from a symmetrical profile placed at zero 
angle of attack along the axis of a channel with parallel walls. The lndl- 
cated characteristic solution of the stream function t(e, II) , which satls- 
fies the Trlcomi equation, is constructed in the plane 13 , n by the method 
of singular Integral equations. It Is shown that for unlimited widening of 
the channel, breservatlon of the choking condition and fulfillment of a cer- 
tain other condition, this characteristic solution transforms into the char- 
acteristic solution of two-dimensional free sonic flow, found by Frankl' Cl] 
and Guderley. 

1. We shall examine the flow over a thin sysn&ricalconvex profSle placed at 
zero angle of attack along the axis of a channel with parallel walls of width 

z, by a two-dl.menslonal transonlc gas slow at the 

choking condition when a sonic line AB (RLg.l)arlses 

between the body and the walls. 

Let the stream function $(e, n) satisfy the 

Trlcoml equation 
rl+e+ 4% = 0 (1.1) 

and assume the value 1-O on the axis DE and 

1 the channel 

on the boundary of the body; 

rb IJ o:~~~~leD~ett~en = Q . Here 

Fig. 1 the velocity vector and the axis of the channel, 

TJ is a known function of the velocity modulus and 

2Q is the gas flow in the channel. 

Far In front of the profile the flow closely resembles a homogeneous sub- 

sonic flow (n,z 0), behind the sonic line AB the flow becomes supersonic. 

Because of the symmetry of the picture we limit ourselves to a study of the 

flow above the axis DE to the llmltlng characteristic SC . The flow region 

DEACBD transforms in the plane en Into a certain region (IV.g.2). The 
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stagnation point of flow E transforms to infinity in the plane en . Curve 

CAE in Fig.2, which corresponds to the boundary of the body, is usually not 

f 
known. For sufficiently great width zt of the chan- 

r7 
nel, the influence of shape of the profile on the 

ji+=o 
subsonic flow of the gas far from the body is lnsig- 

It-0 nificant. The region of gas flow far from the profile 
(where e z 0) will be reflected into the vicinity of 

axis n @DE) in Fig.2; function -Jl(e, n) for R =: 0 

will depend weakly on the form of curve EAC for con- 

stant 0 and n, . The purpose of the following will 

be to obtain the function $(Q, n) which describes the 

transonic flow far from the body in the channel (for 

G R =: 0) where t'he shape of the body has little influ- 

Fig. 2 ence on the gas flow. 

In order to have a shock-free continuation of flow beyond the sonic line 

AB , it Is sufficient for the stream function $(e, n) in the vicinity of the 

center of the nozzle B to have the following behavior [33: 

z (9) = Q - 3WkW + 0 (O), v (8) = hO-55 + 0 (9”~) (e ---f o) (~3 
Here 

II, 6% 0) = z (% a$@, O)/ all = v(8) (A = const) V) 

The desired function $(e, 9) must describe the homogeneous flow far ahead 

of the profile and also the flow in the vicinity 

v;; 7/ L\ 
of the center of the nozzle 3 near the wall of 

\ 
the channel DB , where the conditions (1.2) and 

I-C \ (1.3) hold. 

J %I 1 

~ 

2. In order to construct a characteriStiC Solution 

P'@ of the flow far from the profile in the channel - a 

0 

I 
solution, which is independent of the shape of 

\ 

\ lA 

I B 
the surface of the body - we proceed in the fol- 

\ 
,,/+=0 

lowing way. The curve EAC in Fig.2 is removed 

to infinity In the gr( plane, retaining the con- 
\ ditlon Q =O on EAC. All other points and 

Fig. 3 boundary conditions for the function Ji(B, n) 

will be unchanged. Then we obtain the following boundary value problem for 

,fe, 51) : within the region EDBC’A’E (Fig.3) where A’C’ is a charac- 

terlstic of Equation (1.1) moved out to infinity, It is necessary to.deter- 

mine a bounded solution of Equation (1.1) satisfying the following conditions 

I# ((3, 0) := Q + 0 (W), 9,, (8, 0) = 0 (84) (e -+. 0) 

9 IZ 0 at infinity Ed’ 

$ZO on the infinite characteristic A'C' 
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By constructing the solution $(e, n) of this boundary value problem of 

Tricomi, for tl z 0 the desired characteristic solution of the flow Is 

obtained far from the profile In the channel. 

Following Gellerstedt [4] the boundary value problem is solved by the 

method of singular equations In closed form. The solution $(e, n) for ~30 

is sought In the form of a sum of solutions of Equation (1.1) 

J) 6 q) = Sl@ 4 +$a @9 4 (2.5) 

qI (6, q) - Qt,‘W f+‘V-~,Jht) .I*,, (At,) dh, t, = 4 qoo”:: (2.6) 

0 

$2 (cl, q) = - y y v (s) { [(0 - s)A + ; qy - [(cl + s)2 + $ ?q’1.) ds 
cl 

(2.7) 
Here .V(e) =$$(0,0),0<0< 00 Is a function subject to determlna- 

tion. .It satisfies the conditions: v (0) = 0 (e-‘/a) for 8 --_, 0; v (8) -+ 0 
for fj-+m, which follows from (2.2) and (2.3). It Is not difficult to 

verify that function Jl(e, n) of Equation (2.5) satisfies conditions (2.1) 

and (2.3). Condition (2.4) on characteristic C'A' is equivalent to the 

integral relationship ([53, p.381) 

(2.8) 

where the notation of (1.3) Is used; the constant y is defined in (2.7). 

The second integral relationship between functions 'T(e) and V(e) is 

obtained from Equations (2.5) to (2.7) 

f(e) = rl(e) - JV (s) (18 -S I-'/S - (e + s)+)~s (0<6+) (2.9) 

Here 'tl (e) = $I (e, 0,: Eliminating the quantity ~(9) from (2.8) and 

(2.91, we shall obtain an Integral equation for the determination of func- 

tion de) . After some transformations [5], this integral equation will 

take the form co 

(2.10) 

Here 

The singular Integral equation (2.10) has an automorphic kernel. By sub- 

stitution of 8'1 x and 821 y the equation readily reduces to the charac- 

teristic Integral equation. Solution of Equation (2.10) Is written In closed 

form ([61 Section 47). Since the desired function v,(e) satisfies conditions 

enumerated after Equation (2.7), then in (2.10) the Index of the equationtill 
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be k=O; therefore in the indicated class, Equation (2.10) has a unique 

solution, If function F(B) satisfies certain conditions of smoothness ([6], 

Section 47). 

The canonic function of Equation (2.10) In the givenzlass 13 z(e) = @-‘/a, 

and the solution has the form 

‘(‘)= +[F(e)++&;)““(3&j+ s&)F(~)ds]= ~[F(ql 
0 

w<e< c=) (2.42) 
The function ~(8) which was found, determines the solution $(13, q) of 

the problem of Trlcoml. It remains to compute the integrals encountered and 

to verify the fulfillment of condition (2.2). Functions TV (0) =q1(8, 0) 

and ~~'(6) = d&(8, O)/ de are determined from (2.6) 

(2.13) 

The hypergeometrlc series In (2.13) converges absolutely for all real 

values of the parameters. 

For e-o we obtain x1(e) = Q+o(e). Substituting the integral 

for T{(0) from (2.13) Into (2.11) and changing the order of Integration we 

find 

(2.14) 

where the nypergeometrlc series converges absolutely for all real values Of 

the parameters. Substituting the series for F(B) 

Into Equation (2.12) we find "(0). It is necessary.here to compute the 

function R [(@ + f,*)-l*-1] (n = 0, 1, 2. . .), where the linear operator 

R Is determined In (2.12). After a slight transformation we obtain 

The singular Integral entering Into this Is computed as follows (*): 

") See footnote on the next page. 
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Then in (2.16) some terms disappear and from (2.15) and (2.12) we deter- 

mine the function v(e) 

(2.17) 

Here equations for the transformation of gamma functions are utilized 

Series (2.17) converges absolutely. This follows from representation of 

v(e) in the form (2.12) and (2.14). Therefore, regrouping the terms in 
series (2.17) in order of increasing powers of the argument of polynomials, 

we obtain 

DifPerentiating (2.9) with respect to 0 and ellminating v(8) with the 

aid of (2.8), we arrive C5] at a singular equation for the derivative ~'(8). 

with consideration of (1.2),(2.3),(2.1.0),(2.12) and (2.13) its solution 

has the form % 2% too 
a 

z’p) = _ fyh e,yymz 1/3;~ F( - + , 1; f ; 2- t, + @ 1 
Condition (1.2) is satisfied here. 

Thus the solution for the Tricomi problem (2.1) to (2.4) is constructed. 

The solution Is determined by Equations (2.5) to (2.7) and (2.18). Integrals 

in (2.6) and (2.7) can be presented in the form of se&es. For tl sr: 0 solu- 

tion $(8, n) describes transonic two-dimensional flow of a gas far from the 

profile placed in a channel with parallel walls. 

In order to satisfy the condition $ -: 0 on the boundary of the profile, 

it is necessary to add to the constructed solution Jl(0, n) a regular solu- 

tion Q3 of Equation (1.1) which vanishes for 0 = 0, 0 \<q < 00 such that 

the sum ‘) t $3 is equal to zero along the curve Z4C in Fig.2. 

3. It will be shown that in case of indefinite widening of the channel, 

*) In Equation 3.228.5 from [7] for C> 0 the factor TI is left out infront 
of all terms (see for example equation 3.222.2 from [?I for a< 0 and pri- 
mary source). 



while maintaining the chocking condition, and in satisfying a certain other 

condition, the constructed solution transforms into the characteristic solu- 

tion of two-dimensional free sonic flow, found by Prankl' [l and '21 and 

P = v-e2 + “/cl q3, s = e/p (3.1') 

here C Is some constant which depends on the size of the profile. This 

self-similar solution of Equation (1.1) becomes zero for A=O, O<n<m, 

It Is regular on the limiting characteristic PC and on RA' (Fig.j), it 

turns to Infinity at the point B (e= n= 0) and tends to zero at infinity of 

the plane 8, n for p > 0. 
(3.2) 

Designating 

Zc(O)= ljc(8, O)= cm $ws, all,0 (8, 0) VI) ((3) y= -7&j--- = C$,W~~ (o<e<ca) 

we readily find the relationship between am and ~~(0) 

(3.3) 

Here the constant y is determined in (2.7). Relationship (3.3) shows 

that a,,(Q, 7) vanishes on the characteristic A’C’ (Fig.3). 

We shall examine the limit of solution $(e, n) of (2.5) for unlimited 

wldening of the channel (L - m) while the choking condition Is maintained 

(4 - m , rl,' 0). Then point D in Fig.3 approaches point ,S and the value 

of $(e, n) Increases without bound on section DL? . The limit of the sum 

of the series from (2.17) for t, = 2/3qz -+ 0 is equal to the constant 

Therefore the limit of function "(0) for t_- 0 , 0 - m is determined 

by the limit of the product 0 X tz from (2.17) which can be equal to zero, 

to Infinity or to a finite quantity, if it Is not assumed that the body 

dimensions are preserved when the channel is widened. It will be shown that 

for the condition 
lim /3t,"'~ == A > 0 for t,i 0 (A = const) (3.4) 

the constructed characteristic solution $(I?, 7) transforms into the charac- 

teristic solution (3.1) for free sonic flow near the body. Denoting the 

limit of function $(e, T-I), when condition (3.4) is satisfied, by 4*(F), ri) 

and the limit of function v(e) by V,(R), we obtain from (2.17) 

i.e. function v,(e) can differ from function v,,(4) in (3.2) only by a con- 

stant factor. By equating these two we obtain 

(3.1;) 
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If T,(O) is the limit of ~(6) for t-l- 0 and condition (3.4), then 

condition (2.8) for $,(e, n) is rewritten in the form 

(3.7) 

Then from equality V,(6) E V,,(e), 0 < 8 < oc and relationships (3.7) 

and (3.3) it follows that -c*(e)= T,,(O), 0 < 8 < 00. Since 

$* (0, r) ==$o (0, rl) =(J, 0 < 7 < O", 

then because of uniqueness of solution of the Dirichlet problem for q >() 

and the Cauchy problem for 9 < 0, we obtain $* (0, $ =Ilc (0, q) -Ln the 

region of Fig.3. 

Condlt$on (3.4) can be-written in a different form. For L z m and 

II~SS 0 we have 
Q = O(L), t, = a/s~,*h = 0 [(i ----~03)l~l 

where M, Is the choking Mach number of uniform flow far ahead of the profile 

in the channel. Therefore we obtain from (3.4) 

where l. Is a characteristic linear dimension of the profile, B is a non- 

dimensional constant which depends on the shape of the profile. 

It remains to clarify the physical meaning of condition (3.8) for L + - 

and M 4 1 . We shall demonstrate that condition (3.8) is equivalent to the 

requirzment of maintaining the dimensions of the profile when the channel is 

widenend at least for certain shapes of profiles. For this It is necessary 

to solve the boundary value problem in Fig.2 for a definite profile, to ex- 

press the characteristic dimension 2 of the profile through Q, n, and the 

shape of the profile and to check condition (3.8) for M,- 1 and for con- 

stant 1 . The problem of a wedge in the channel was solved analytically by 

Marschner [8I by means of characteristic solutions of Equation (1.1) intro- 

duced by Guderley for the condition t_< A~, where o. is the half-angle of 

the wedge. For the condition of constant wedge dimension the equation for 

the choking Mach number M, has the form (3.8). 

The problem of a wedge in a channel under choking conditions was also 
solved by Morioka [q] by the relaxation method. Calculations were made for 
three values of the parameter Z/L where 1 is the length of the wedge for 
fixed value of angle eO. For M z 1 the equation for choking Mach number 
Mm of the form (3.8) which was obtained by Marschner agrees satisfactorily 
with numerical values of [g]. An equation of the form (3.8) was also obtained 
by Guderley [lo and 111 in the solution of the problem of gas flow near a 
flat plate placed at an angle of attack in a channel with parallel walls. 
It may be assumed that condition (3.8)wili be fulfilled for some convex 
bodies when the channel is widened, when the choking condition of the chan- 
nel is maintained and when.the dimensions of the profile are preserved. Then 
the two-dimensional transonic flow near the profile placed into a channel 
with parallel walls will transform into the free sonic flow near the profile. 

We note that recently the characteristic solution of free sonic flow near 
a body was checked experimentally [12]. 
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